Future Generation Adequacy of the Hungarian Power System with Increasing Share of Renewable Energy Sources
Abstract
The power generation sector is expected to undergo substantial changes in Hungary in the near future due to the decommissioning of several large units reaching the end of their lifetimes in parallel to the projected increase of renewable electricity generating capacity. In addition to the traditionally widely used deterministic adequacy assessment methods, a probabilistic approach has a great importance in case of technologies with different capacity credits. An analytical country-specific adequacy assessment model enabling the probabilistic modelling of wind power plants was developed and applied to generating capacity forecasts for Hungary. Model parameters were estimated using multi-annual production, plant availability and hourly system demand data. Adequacy indicators obtained from the model clearly show increasing reliance on imported electricity in the absence of investments in new generating capacity.